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AB ST RACT  
 

This investigation quantifies the influence of inter-annual climate variability alongside long-term climate trends 
on agricultural output across Nigeria for the period 1991-2022. Attention is centred on dominant meteorological 
drivers specifically precipitation, air temperature, solar radiation, atmospheric CO2 concentrations, and relative 
humidity with yield responses of principal crops being the dependent variable of interest. Using rigorously 
sourced secondary data, the empirical analysis adopts the Autoregressive Distributed Lag (ARDL) model 
complemented by preliminary stationarity assessment via both Augmented Dickey-Fuller (ADF) and Phillips-
Perron (PP) unit root tests to confer confidence in the estimation procedures. The statistical outputs indicate 
that, within a lag structure, rainfall, thermal energy, and photon flux exert an overall positive but 
heterogeneously tempered influence on yields, with the crop-to-climatic response exhibiting significant temporal 
lags. Conversely, atmospheric CO2 and humidity albeit with delayed feedback pathways exhibit negative 
damping effects, thereby underscoring the intricate and delayed nexus between plant physiology and altered 
atmospheric regimes. Collectively, the evidence substantiates a pronounced and polycentric attenuation of 
agricultural productivity traceable to long-term climate change within the observed cohort. The analysis thereby 
advocates the prompt execution of geographically tailored adaptive measures, comprising (i) the dissemination 
of climate-resilient cultivars, (ii) systematic enlargement of irrigation networks to mitigate rainfall variability, and 
(iii) consolidation of agricultural extension systems to elevate farm-level adaptive capacity. 
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INTRODUCTION 

 
Climate change poses a growing threat to 

agricultural productivity, especially in underdeveloped 
countries like Nigeria. Agriculture, a cornerstone of 
Nigeria’s economy, contributes approximately 24% to 
the GDP and employs about 70% of the population 
(FAO, 2021). Nigeria’s diverse agro-ecological zones, 
ranging from humid tropical forests in the south to 
semi-arid savannahs in the north, support various 
staple crops, including rice, cassava, maize, yams, and 
groundnuts, which are vital for both subsistence and 
commercial agriculture (NBS, 2020). However, the 
effects of change in climate are increasingly 
jeopardizing Nigeria's agricultural productivity. Climatic 
change, driven by rising greenhouse gas emissions, 

particularly carbon dioxide (CO2), leads to altered 
temperature and precipitation patterns and more 
frequent extreme weather events (IPCC, 2021). As 
Nigeria relies heavily on rain-fed agriculture, the 
country is especially vulnerable to these changes due to 
limited adaptive capacity (Adetayo et al., 2018). Key 
climate variables-CO2 emissions, rainfall, temperature, 
relative humidity, and sunshine hours-play an important 
role in determining the productivity of major food 
crops, necessitating effective adaptation strategies. 

Empirical research highlights several climate-
related challenges impacting Nigerian crop 
productivity. Rising temperatures increase plant 
respiration and water stress, leading to reduced yields 
(Ayanlade et al., 2020). Erratic rainfall patterns disrupt 
planting and  harvesting  schedules,  raising  the  risk  of  
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crop failure (Odekunle et al., 2020). While increased CO2 
levels may enhance photosynthesis in some cases, they 
often result in higher temperatures, which offset the 
benefits by exacerbating water stress and increasing 
pest and disease incidences (Oladipo et al., 2020). 
Additionally, inconsistent rainfall leads to prolonged 
dry spells and flooding, further reducing crop yields, 
including both water-dependent and drought-resistant 
crops (Akinbobola et al., 2019). Temperatures beyond 
optimal levels for specific crops reduce photosynthesis 
and accelerate crop maturation, ultimately diminishing 
yields (Adejuwon, 2021). 

Despite global attention on climate change's 
impact on agriculture, studies specific to Nigeria remain 
limited. The compounded challenges facing Nigeria’s 
agricultural sector, such as poverty, inadequate 
infrastructure, and limited access to technology, are 
further exacerbated by climate change (Nwafor & 
Eboh, 2019). Understanding the effects of climate 
factors-CO2 emissions, rainfall, temperature, and 
humidity staple crops is critical for formulating targeted 
adaptation strategies (Olajide et al., 2021). 

This study focuses on examining the impact of 
change in climate on the productivity of key food crops 
in Nigeria from 1991 to 2022. By analyzing long-term 
trends in staple crops like rice, cassava, maize, yams, 
and groundnuts, the research provides empirical 
insights that can inform future agricultural planning 
(Adewuyi & Omotosho, 2021). The study aims to 
highlight the vulnerabilities in crop productivity and 
suggest intervention areas, emphasizing the 
importance of sustainable agricultural practices and 
effective climate adaptation strategies to meet the 
demands of Nigeria's growing population (Onyekuru et 
al., 2020).Globally, numerous studies show that climate 
change negatively affects agricultural productivity. For 
example, Dongbei et al. (2022) found significant 
productivity declines in China due to rising 
temperatures, while Habib-ur-Rahman et al. (2022) 
reported that droughts, floods, and heat waves 
threaten agricultural production across Asia. Similarly, 
Nigerian studies consistently indicate adverse impacts 

of climate variability on agriculture (Ogundele & 
Jegede, 2013. For instance, Ogbuabor and Egwuchukwu 
(2017) documented how erratic climate patterns reduce 
crop yields. This study contributes to the existing body 
of knowledge by providing evidence-based insights on 
the relationship between climate change and food crop 
productivity, guiding policymakers and stakeholders in 
enhancing Nigeria's agricultural resilience to climate 
variability. 

MATERIALS AND METHODS 
 
The Study Area 

The current research paper focus on Nigeria, the 
most populous African nation that is located in south of 
Sahara. Nigeria is a West African country, with its 
latitudes of S 4°–14° N and longitudes of 3°–15° E divided 
into Federal Capital Territory (FCT, Abuja) and 36 
states. It borders Niger, Cameroon, and the Gulf of 
Guinea, covering 98.3 million hectares, of which only 
34.2 million are cultivated, with less than 1% irrigated 
(NBS, 2023). Rainfall ranges from 381 cm in the south to 
64 cm in the north, and temperatures average 28°C to 
31°C. With a population of 223 million in 2023, over 60% 
live in rural areas, relying on farming, mining, and crafts 
(NPC, 2023). The agricultural sector, including crop 
production, livestock, fishery, and forestry, is heavily 
impacted by climatic factors like temperature, rainfall, 
and CO2 emissions, which affect productivity and 
exacerbate climate change (Ogunleye et al., 2021). 
 
Model Specification 

The examination of climate change effects on the 
aggregate productivity of cassava, groundnut, maize, 
rice, and yam in Nigeria, spanning the period from 1991 
to 2022, was conducted by estimating a dynamic 
autoregressive distributed lag (ARDL) model. Prior 
analyses employing the traditional cointegration 
methodologies of Engle and Granger (1987) and 
Johansen and Juselius (1990) necessitate the same 
order of integration for all involved variables, a 
condition that is often not met in agricultural time 
series data such as  those under  review.  Consequently,  

 

 

Fig 1: Nigeria’s map showing 
the six agroecological zones 
of the country and the 
various states sampled for 
their climatic change as a 
representative of each 
agroecological zone. 
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the study adopts the ARDL bounds testing procedure 
proposed by Pesaran et al. (2001), which 
accommodates a mixed integration order that includes 
both I(0) and I(1) processes and, thus, is particularly 
advantageous in the present dataset. Haug (2002) 
further justifies the employment of the ARDL 
framework on the grounds that it is robust in small 
sample contexts. Additionally, Anarah et al. (2025) 
document that the ARDL framework permits the 
simultaneous estimation of long-run and short-run 
coefficients, thus providing a more comprehensive 
econometric structure. From the theoretical 
underpinnings, Pesaran et al. (2001) stipulate that the 
dependent variable must be I(1), while the regressors 
can be I(0) or I(1), which aligns with the specification of 
the climate and productivity dataset. The long-run 
functional relationship between the climatic variables 
and agricultural output, as derived from theory, 
empirical literature, and diagnostic tests, is 
hypothesised and presented for evaluation. 

InAPFCt = λ0 + λ1InARFt + λ2InATEMPt + 
λ3InARELHt + λ4InACDEt + λ5InASUNt + λ6InALUCt + 
λ7InAFDIt-1 + λ8InDIAt + λ9InGCEAt + λ10InRERt + 
λ11InINFRt + εt (1) 

Where, λ's = the long-run unknown coefficients, In 
= the natural logarithmic operator, APFCt = the 
monetary value of the aggregate agricultural food 
crops productivity, encompassing the period t, ARFt = 
the average annual rainfall expressed in millimetres for 
period t, ATEMPt = the average annual temperature 
recorded in degrees Celsius for period t, ARELHt = the 
average annual relative humidity presented in 
percentage terms for period t, ACDEt = the average 
annual carbon dioxide emissions expressed in metric 
tons for the period t, ASUNt = the average annual 
sunshine total in hours for the period t, ALUCt = the 
total harvested crop area in hectares for the period t, 
AFDIt = the volume of agricultural foreign direct 
investment disbursed during period t, DIAt = the 
cumulative domestic investment in the agricultural 
sector, expressed in Naira billions during t, GCEAt = the 
total government capital expenditure directed toward 
agriculture in Naira billions for period t, RERt = the real 
exchange rate expressed in Naira per US dollar for 
period t, INFRt = the consumer price index inflation rate 
expressed as percentage in period t, εt = the stochastic 
error component of the equation, (Anarah et al., 2025). 

To investigate the long-term association among 
the variables under consideration, we adopt the ARDL 
bounds testing methodology for cointegration, as 
outlined by Pesaran et al. (2001). The technique 
presents prominent strengths: it accommodates a 
regressor space that contains both stationary and first-
differenced variables without requiring unit-root pre-
testing and displays finite-sample reliability, even for 
datasets spanning less than four decades. The error 
correction model version of the ARDL approach is 
expressed as: 
ΔInAPFCt = λ0 + λ1InAPFCt-1 + λ2InARFt + λ3InATEMPt + 

λ4InARELHt + λ5InACDEt + λ6InASUNt +λ7InALUCit + 
λ8InAFDIt -1 + λ9InDIAt + λ10InGCEAt + λ11InRERt + 

λ12InINFRt + ∑ λ10
𝑝−1
𝑖−0 ΔInAPFCt-i + ∑ λ11

𝑝−1
𝑖−0 ΔInARFt-i + 

∑ λ12
𝑝−1
𝑖−0 ΔInATEMPt-i + ∑ λ13

𝑝−1
𝑖−0 ΔInARELHt-i 

+∑ λ14
𝑝−1
𝑖−0 ΔInACDEt-i + ∑ λ15

𝑝−1
𝑖−0 ΔInASUNt-i 

+∑ λ16
𝑝−1
𝑖−0 ΔInALUCit-i + ∑ λ17

𝑝−1
𝑖−0 ΔInAFDIt-2 + 

∑ λ18
𝑝−1
𝑖−0 ΔInDIAt-1 + ∑ λ19

𝑝−1
𝑖−0 ΔInGCEAt-1 + 

∑ λ20
𝑝−1
𝑖−0 ΔInRERt-1 + ∑ λ21

𝑝−1
𝑖−0 ΔInINFRt-1 + εt   (2) 

Δ denotes the first-difference operator, while the 
λs represent both the long-run and short-run 
coefficients. The notation In signifies the natural 
logarithm, t-1 refers to the first lag of the variable, and 
t-i corresponds to the required lag length of the 
variable that best fits the model specification (Anarah 
et al., 2025). All other variables are defined consistently 
with prior usage. 

The null hypothesis assumes no cointegration, 
specified as H0: λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, 
λ12 = 0. The alternative hypothesis, H1, states that at 
least one of these coefficients differs from zero, 
though equivalent formulations are possible. The F-
statistic is used to test these hypotheses, with rejection 
of H0 indicating the presence of cointegration. The 
critical bounds for this decision are provided by Pesaran 
et al. (2001). The upper critical bound (UCB) assumes 
that all series are integrated of order one [I(1)], while 
the lower critical bound (LCB) assumes all are 
stationary at order zero [I(0)]. Cointegration is 
confirmed when the F-statistic exceeds the UCB, while 
a value below the LCB indicates no cointegration. 

When the F-statistic falls within the bounds, the 
result is inconclusive; therefore, the lagged error 
correction term is used alongside the F-test to 
determine the long-run relationship. For specification 
(2), the appropriate lag length is chosen based on the 
Schwarz Bayesian Criterion (SBC). For annual data, 
Pesaran and Shin (1999) recommend a maximum of 
two lags, with the lag producing the lowest SBC being 
retained. If a long-run relationship is confirmed, the 
ARDL model in equation (1) is then interpreted 
accordingly. 

zInAPFCt = λ0 +∑ λ1
𝑝−1
𝑖−0 ΔInAPFCt-1 + ∑ λ2

𝑝−1
𝑖−0 ΔInARFt-1 

+ ∑ λ3
𝑝−1
𝑖−0 ΔInATEMPt-1 + ∑ λ4

𝑝−1
𝑖−0 ΔInARELHt-1 

+∑ λ5
𝑝−1
𝑖−0 ΔInACDEt-1 + ∑ λ6

𝑝−1
𝑖−0 ΔInASUNt-1 

+∑ λ7
𝑝−1
𝑖−0 ΔInALUCit-1 + ∑ λ8

𝑝−1
𝑖−0 ΔInAFDIt -2 + 

∑ λ9
𝑝−1
𝑖−0 ΔInDIAt-1 + ∑ λ10

𝑝−1
𝑖−0 ΔInGCEAt-1 + 

∑ λ11
𝑝−1
𝑖−0 ΔInRERt-1 + ∑ λ12

𝑝−1
𝑖−0 ΔInINFRt-1 +  εt                      (3) 

        The Autoregressive Distributed Lag (ARDL) 
estimation procedure requires (p + 1) k regressions, 
with p + 1 denoting the pre-defined maximal lag order 
and k representing the count of included explanatory 
variables (Chowdhury, 1993). The lag length 
determination proceeds under the Schwartz-Bayesian 
Criterion, selectively retaining the fewest lags 
necessary, and is thus characterised as exhibiting 
parsimony. Consequently, the framework is 
constrained to the simplest feasible configuration that 
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sufficiently captures the dynamic relationships. The 
short-run adjustment mechanism is subsequently 
evaluated by recasting the ARDL model into its Error 
Correction Model (ECM) representation, whereby the 
fitted ECM typology is specified as follows: 

ΔInAPFCt = λ0 + ∑ λ10
𝑝−1
𝑖−0 ΔInAPFCt-1 + 

∑ λ11
𝑝−1
𝑖−0 ΔInARFt-1 + ∑ λ12

𝑝−1
𝑖−0 ΔInATEMPt-1 + 

∑ λ13
𝑝−1
𝑖−0 ΔInARELHt-1 +∑ λ14

𝑝−1
𝑖−0 ΔInACDEt-1 + 

∑ λ15
𝑝−1
𝑖−0 ΔInASUNt-1 +∑ λ16

𝑝−1
𝑖−0 ΔInALUCit-1 + 

∑ λ17
𝑝−1
𝑖−0 ΔInAFDIt -2 + ∑ λ18

𝑝−1
𝑖−0 ΔInDIAt-1 + 

∑ λ19
𝑝−1
𝑖−0 ΔInGCEAt-1 + ∑ λ20

𝑝−1
𝑖−0 ΔInRERt-1 + 

∑ λ21
𝑝−1
𝑖−0 ΔInINFRt-1 + ηECMt-1 + εt                (4) 

ECMt-1 = Error Correction term lagged by one period, 
η = coefficient of the error correction term, 

The lagged residual term (ECM) in equation 4 
shows the disequilibrium in the long-run relationship 
(ut) in equation (1). The a priori expectation is stated 
mathematically as: ARFt, ARELHt, ASUNt, ALUCit, AFDIt -

1, DIAt, GCEAt > 0; ATEMPt, ACDEt, RERt, INFRt < 0. 
 
Diagnostic Tests: Stationary Properties of The Variable 
Used in The Analysis 

In estimating the economic models stated in 
equations (1), the statistical properties of the series 
were tested, particularly their stationarity. The results 
of the Augmented Dickey-Fuller (ADF) and Phillips-
Perron (PP) unit root tests for the logged variables in 
the analysis are presented in Table 1. 

Empirical analysis using the Augmented Dickey-
Fuller (ADF) test confirmed that average annual rainfall 
(ARFt), average annual sunshine duration (ASUNt), 
average annual temperature (ATEMPt), and total 
domestic investment in agriculture (DIAt) were 
stationary at level I(0). A complementary Phillips-
Perron (PP) test corroborated the I(0) classification for 

ARFt, ASUNt, and DIAt, while indicating that average 
annual CO2 emissions (ACDEt), agricultural foreign 
direct investment (AFDIt), and total harvested area 
were stationary only after first differencing, I(1), and 
therefore required differencing to achieve stationarity. 
The consistency of both ADF and PP tests for ARFt and 
ASUNt strengthened the reliability of results. An 
inconsistency arose with the temperature variable 
(ATEMPt), which appeared I(0) under the ADF test but 
I(1) under the PP. To reduce potential bias from 
structural breaks and improve reliability, the PP test 
was given precedence, following the approach of 
Anarah et al. (2025). Accordingly, all I(1) variables were 
log-differenced before estimation to mitigate bias 
associated with non-stationarity at levels. 

For the long-run equilibrium framework, bounds 
testing was applied in accordance with the 
autoregressive distributed lag (ARDL) methodology of 
Pesaran et al. (2001), which allows for the joint 
estimation of short-run and long-run dynamics of the 
integrated variables. 

The parallel process confirmed that the model 
yields dependable estimates of the underlying dynamic 
relationships. The incorporation of the Phillips-Perron 
test corroborated the adequacy of the assumed data 
structure and affirmed the appropriateness of the 
Autoregressive Distributed Lag framework. 
 

RESULTS AND DISCUSSION 
 
Effects of Climate Change on Aggregate Productivity 
of Food Crops in Nigeria 

This section evaluates how climate variability has 
shaped aggregate food-crop productivity in Nigeria 
over 1991–2022, distinguishing between long-run 
equilibrium   links    and    short-run    adjustments.    The  

 
Table 1: Result of the unit root test of the logged variables used in the analysis 

Variable             Augmented Dickey-Fuller Test Phillips-Perron Test 

Level 1st 
Difference 

IO Level 1st 
Difference 

IO 

Average annual CO2 emission (ACDEt) -1.599                            -4.349 **                                    I(1) -1.348                          -4.431**                                    I(1) 
Agricultural foreign direct investment (AFDIt) -1.516                           -6.197**                                     I(1) -1.339                          -6.835**                                    I(1) 
Average annual relative humidity (ARELHt) -2.770                           -6.373**                                     I(1) -2.667                          -8.511**                                    I(1) 
Average annual rainfall (ARFt) -10.122**                          -                                         I(0) -6.228**                          -                                         I(0) 
Average annual sunshine hours (ASUNt) -5.042**                           -                                         I(0) -8.195**                          -                                         I(0) 
Average annual temperature (ATEMPt) -4.331*                           - I(0) -1.909                          -4.411**                                     I(1) 
Total domestic investment in agriculture (DIAt) -4.588**                           -                                         I(0) -4.526**                          -                                         I(0) 
Govt. capital expenditure on agric. (GCEAt) -2.130                           -6.816**                                     I(1) -1.893                          -9.373**                                    I(1) 
Aggregate area of land harvested of food crops 
(AGG_ALUCt) 

-1.255                           -4.756**                                     I(1) -1.238                          -4.685**                                    I(1) 

Value of aggregate productivity (AGG_PRODTt)      -2.359                           -6.820**                                     I(1) -2.279                          -8.318**                                    I(1) 
Average annual inflation rate (INFRt) -2.667                           -5.335**                                     I(1) -2.882                          -8.421**                                    I(1) 
Average annual real exchange rate (RERt) -0.308                           -4.251*                                     I(1) -0.444                          -4.131*                                    I(1) 

Note: For the Augmented Dickey-Fuller (ADF) investigation conducted at the level of the series, the critical threshold values are -
4.297 (at the 1% significance level) and -3.568 (at the 5% significance level). At the first differencing, the same critical values apply. 
Concerning the Phillips-Perron (PP) test, which also evaluates the level, the critical values are marginally less stringent at -4.285 
(1% level) and -3.563 (5% level). At the first difference stationarity, the hypothesis-testing boundary mirrors that of the ADF. 
Asterisks are employed to indicate the significance thresholds—5% and 1% demarcated by one and two asterisks, respectively. 
The sequencing of the level, differenced evaluation, as well as the employed lag structure in the tests, integrates both a constant 
term and a time trend. The symbol ‘IO’ abbreviates the number of integration steps indicated at the respective criterion.
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empirical specification includes key climate indicators 
rainfall, temperature, sunshine duration, atmospheric 
CO₂, and relative humidity while controlling for selected 
macroeconomic factors to reduce omitted-variable 
bias. To verify the existence of a stable long-run 
relationship among these series, we apply the Pesaran–
Shin–Smith bounds testing procedure within an ARDL 
framework. The bounds test outcome confirming (or 
rejecting) co-integration between climate indicators 
and aggregate food-crop productivity is reported in 
Table 2, which provides the computed F-statistic 
alongside the relevant critical values for the chosen 
significance levels and the number of regressors. 
Where co-integration is supported, long-run 
coefficients are interpreted jointly with the associated 
error-correction dynamics to quantify the speed at 
which short-run deviations converge back to 
equilibrium. 
 
Table 2: Results from the Bounds test examining the 
existence of a co-integration relationship between climate 
change indicators, macroeconomic factors, and overall food 
crop productivity in Nigeria. 

F-Bounds 
Test 

 Null Hypothesis: No levels 
relationship 

Test 
Statistic 

Value Signif. I(0) I(1) 

F-statistic 24.85274 10% 2.07 3.16 
k 11 5% 2.33 3.46 
  2.5% 2.56 3.76 
  1% 2.84 4.10 

 
The results of the bounds test report an F-statistic 

of 24.85274, which surpasses the critical threshold at 
both the 1 per cent (4.1) and 5 per cent (3.46) 
significance levels. Consequently, the null hypothesis 
stipulating the absence of cointegration is rejected, 
substantiating the existence of a long-run equilibrium 
linkage among the considered variables. Such a 
pronounced finding asserts that, notwithstanding 
transitory oscillations, the variables demonstrate a 
cohesive trajectory in the enduring temporal 
framework. The model thus provides a rigorous 
representation of the underlying mechanics of 
aggregate food crop productivity in Nigeria, evidencing 
a prevailing long-run equilibrium which is structurally 
conditioned by climatic and macroeconomic 
determinants. An extended analytical framework will 
pursue the quantification of these associations by 
applying long-run estimation procedures in the 
forthcoming section.  
 
ARDL Long-run Coefficients 

Table 3 presents the ARDL long-run coefficients, 
mapping the influence of climate change on the trend 
of aggregate food crop productivity in Nigeria for the 
period 1991-2022. The estimated model achieves an R² 
of 0.9987 and an adjusted R² of 0.9947, suggesting that 
99.1% of the recorded change in productivity is 
accounted for by the independent variables under 

study. These statistics confer considerable explanatory 
capacity and, in tandem with an F-statistic of 250.0284 
(p=0.000000), the null hypothesis of equation 
insignificance is decisively rejected at the 1% significance 
threshold. The Durbin-Watson statistic of 2.4359 
insinuates an absence of serial correlation, further 
validating the estimated parameters. Model 
specification was directed by the Akaike Information 
Criterion, which selects the ARDL (1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 
1, 1) architecture as the most parsimonious 
representational frame. The designated lag structure, 
employing lagged regressor variables constrained to a 
maximum lag of one period, duly accommodates the 
temporal interdependencies between climatic factors, 
selected macroeconomic indicators and the 
performance of aggregate food crop productivity. 

The Phillips-Perron unit root test verified the 
stationarity of the variables, ensuring robust 
estimation. Lagged Aggregate Food Crop Productivity. 
The coefficient for lagged aggregate food crop 
productivity (LN (AGG_PRODUCTIVITY(-1))) is -0.547376 
(p = 0.0009), indicating a significant negative 
relationship with current productivity. This suggests 
that a 1% increase in the previous year’s productivity 
leads to a 54.7% decrease in current productivity, 
highlighting a potential diminishing returns effect. Such 
a result is consistent with the theory of diminishing 
returns, where over-utilization of resources, like soil 
nutrients, can reduce future productivity. Olaniyi et al. 
(2023) and Ahmed et al. (2022) support this, noting that 
high previous yields often result in soil degradation, 
adversely affecting future productivity. Among climate 
variables, lagged average annual rainfall (LN (ARF (-1))), 
lagged average annual temperature (LN (ATEMP (-1))), 
and lagged average annual relative humidity (LN 
(ARELH (-1))) significantly impact aggregate food crop 
productivity. Current average annual sunshine duration 
(LN (ASUN)) and its lagged value (LN (ASUN (-1))) also 
show significant effects. Current annual rainfall (LN 
(ARF)) positively affects productivity (0.152149, p = 
0.0746), whereas lagged rainfall (LN (ARF (-1))) 
negatively impacts it (-1.031162, p = 0.0001). This 
suggests that while current rainfall benefits crops, 
excessive or poorly distributed rainfall from the 
previous year can harm productivity. Imandojemu et al. 
(2024) and Anarah et al. (2025) highlight this dual 
effect, with both positive and negative impacts of 
rainfall on productivity. Lagged average temperature 
(LN (ATEMP (-1))) has a significant positive effect 
(18.13547, p = 0.0000), indicating that higher 
temperatures in the previous year boost productivity, 
provided they remain within an optimal range. Arora et 
al. (2019) and Sowunmi et al. (2022) confirm that 
moderate temperature increases can enhance crop 
yields. Lagged relative humidity (LN (ARELH (-1))) has a 
significant negative impact (-0.994278, p = 0.0001). 
High humidity from the previous year is associated with 
lower productivity, likely due to increased pest and 
disease  prevalence.  Cammarano  (2022) and  Amaefule  
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Table 3: ARDL long-run coefficients showing the impact of climate change on total food crop productivity in Nigeria (1991–2022), 
accounting for selected macroeconomic variables 

Dependent Variable: LN(AGG_PRODUCTIVITY)  
Model-selection criterion: Akaike information criterion (AIC) 
Dynamic covariates (one lag, automatic selection): LN(ARF), LN(ATEMP(-1)) 
LN(ACDE(-1)), LN(ARELH(-1)), LN(ASUN), LN(AGG_ALUC(-1)) 
LN(AFDI(-1)), LN(DIA), LN(GCEA(-1)), LN(INFR(-1)), LN(RER(-1)) 
Standard covariates: constant, @TREND   
Selected Specification: ARDL(1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1) 

Variable Coefficient Std. Error t-Statistic Prob.* 

LN(AGG_PRODUCTIVTY(-1)) -0.547376 0.098570 -5.553170*** 0.0009 
LN(ARF) 0.152149 0.072670 2.093696* 0.0746 
LN(ARF(-1)) -1.031162 0.137565 -7.495841*** 0.0001 
LN(ATEMP(-1)) 18.13547 1.789464 10.13458*** 0.0000 
LN(ACDE(-1)) 0.580423 0.320459 1.811221 0.1130 
LN(ACDE(-2)) -0.183946 0.247635 -0.742809 0.4818 
LN(ARELH(-1)) -0.994278 0.120450 -8.254728*** 0.0001 
LN(ARELH(-2)) 0.247600 0.160523 1.542455 0.1669 
LN(ASUN) 0.120283 0.102442 1.174155 0.2787 
LN(ASUN(-1)) 0.282244 0.103432 2.728798** 0.0294 
LN(AGG_ALUC(-1)) 0.260304 0.112495 2.313922** 0.0539 
LN(AGG_ALUC(-2)) -0.100064 0.111598 -0.896645 0.3997 
LN(AFDI(-1)) 0.035054 0.011056 3.170665** 0.0157 
LN(AFDI(-2)) -0.023277 0.009314 -2.499170** 0.0410 
LN(DIA) 0.088633 0.018738 4.729997*** 0.0021 
LN(DIA(-1)) 0.064840 0.065664 0.987442 0.3563 
LN(GCEA(-1)) -0.001273 0.064597 -0.019705 0.9848 
LN(INFR(-1)) 0.008665 0.017352 0.499375 0.6328 
LN(INFR(-2)) 0.128886 0.015361 8.390681*** 0.0001 
LN(RER(-1)) 0.281763 0.047095 5.982831*** 0.0006 
LN(RER(-2)) -0.444058 0.057757 -7.688419*** 0.0001 
C 50.26005 5.530753 9.087379*** 0.0000 
@TREND -0.008511 0.008383 -1.015240 0.3438 
R-squared 0.998729 Mean dependent var 5.896052 
Adjusted R-squared 0.994735 S.D. dependent var 0.310160 
S.E. of regression 0.022506 Akaike info criterion -4.672002 
Sum squared resid 0.003546 Schwarz criterion -3.597751 
LN likelihood 93.08004 Hannan-Quinn criter. -4.328340 
F-statistic 250.0284*** Durbin-Watson stat 2.435866 
Prob(F-statistic) 0.000000    

Source(s): (Anarah et al., 2025)(***), (**) and (*) denote 1%, 5% and 10% significance level 
 

et al. (2023) support this, noting that high humidity can 
reduce crop yields. Lagged sunshine duration (LN 
(ASUN (-1))) positively affects productivity (0.282244, p 
= 0.0294), suggesting that longer sunshine hours 
enhance productivity by improving photosynthesis. 
Osuji et al. (2024) and Rauff & Ismail (2018) find that 
adequate sunshine is crucial for crop growth and yield. 
Among the macroeconomic Variables serving as control 
in the model, lagged area of land under cultivation (LN 
(AGG_ALUC (-1))) positively influences current 
productivity (0.260304, p = 0.0539), indicating that 
increased land area boosts productivity. Adeleke et al. 
(2023) and Ganiyu et al. (2023) support this, noting that 
land expansion enhances agricultural output. The 
previous year’s FDI (LN (AFDI (-1))) has a positive effect 
on productivity (0.035054, p = 0.0157), while two-year 
lagged FDI (LN (AFDI (-2))) negatively affects it (-
0.023277, p = 0.0410). This suggests that initial FDI 
boosts productivity, but its impact diminishes over 
time. Uteh et al. (2022) and Ayuba et al. (2021) highlight 
the positive initial effects of FDI, but also note potential 

long-term challenges. Current private domestic 
investment in agriculture (LN (DIA)) significantly boosts 
productivity (0.088633, p = 0.0021), supporting 
infrastructure and capacity building. Obe et al. (2024) 
and Raji et al. (2024) confirm that domestic investment 
enhances agricultural output. The coefficient for the 
second lag of the inflation rate (LN (INFR (-2))) is 
positive and significant (0.128886, p = 0.0001). Higher 
inflation in earlier periods may boost current 
productivity by increasing agricultural product prices, 
though this relationship is complex. Patrick (2023) and 
Daniel et al. (2022) note that moderate inflation can 
stimulate production. The previous year’s real 
exchange rate (LN (RER (-1))) positively impacts 
productivity (0.281763, p = 0.0006), suggesting that 
currency depreciation benefits productivity by 
enhancing export competitiveness. However, the two-
year lagged exchange rate (LN (RER (-2))) has a 
significant negative effect (-0.444058, p = 0.0001), 
indicating that prolonged depreciation may increase 
input costs. Umoru & Imimole (2022) and Iorember et 
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al. (2024) find that while short-term depreciation 
boosts productivity, long-term effects can be 
detrimental. 
 
ARDL Error Correction Regression Estimated Short-run 
Coefficients 

Table 4 encapsulates the results from the selected 
macroeconomic controls pertaining to the effect of 
climate change on aggregate food crop productivity, 
focusing on the predicted short-run elasticities from 
the ARDL error correction regression. 

The short-run results from the ECM show that not 
all indicators of climate change and macroeconomic 
elements impact the aggregate productivity of food 
crops greatly. It is evident that some climate factors 
such as average annual rainfall (DLN (ARF)), and carbon 
dioxide emissions (DLN (ACDE (-1))) have a positive 
impact on productivity at the 1% significance level likely 
due to the availability of water and the fertilisation 
effect of CO₂ (Anarah et al., 2025). Alternatively, 
relative humidity (DLN (ARELH (-1))) has a negative 
impact on productivity at the 1% level likely due to 
increased chances of diseases or waterlogging. 
Sunshine duration (DLN (ASUN)) has a positive impact 
on productivity at the 1% significance level likely due to 
stimulation of photosynthesis. The negative and 
significant trend variable (@TREND) with a coefficient 
of -0.008511 also suggests a decline in aggregate food 
crop productivity over the period with the available 
technology in agriculture, which is likely due to a lack of 
proper technology adoption, an absence of local, and 

systemic factors like poor governance, infrastructure, 
policy incoherency, and the disarray of innovation to 
local requirements. 

According to the ARDL correction model, the area 
under cultivation of food crops (DLN (AGG_ALUC (-1))) 
positively impacts productivity at 1% statistical 
significance, supporting the hypothesis that expansion 
of cultivation increases output (Anarah et al., 2025). In 
regard to the macroeconomic parameters, private 
domestic investment (DLN (DIA)) and foreign direct 
investment inflows into agriculture (DLN (AFDI (-1))) 
are productivity accelerators at the 1% level, which 
underlines the significance of investment into 
agriculture. Also, the real exchange rate (DLN (RER (-
1))) positively impacts productivity at 1% level, probably 
because it lowers the cost of imported inputs or 
increases the competitiveness of exports. On the other 
hand, inflation (DLN (INFR (-1))) does not play a 
meaningful role, implying that its productivity-sapping 
effect is not felt immediately in the short term. The 
model error correction coefficient (-0.547376) is 
negative and statistically significant at 1% level, which 
means that, the model deviations from the long-run 
equilibrium are corrected at the speed of 
approximately 54.7% per year. This shows that the 
model is stable in the long-run. 

There are also other factors which enhance 
productivity in the long-run, such as rainfall, CO2 
emissions, sunshine duration, domestic land cultivation, 
domestic and foreign investment, and the real 
exchange rate. In  contrast,  high  relative  humidity and  

 
Table 4: Results of the ARDL Error Correction Regression Estimated Short-run Coefficients for the Effect of Climate Change on 
Aggregate food crop productivity in Nigeria (1991–2022), with Control for selected Macroeconomic Variables 

Autoregressive Distributed Lags (ARDL) Modelling Error Correction Mechanism  
Dependent Variable: logarithm of aggregate productivity (DLN(AGG_PRODUCTIVITY)  
Estimation: ARDL of order (1,1,0,1,1,1,1,1,1,0,1,1) 
Specification: case 5—constant and trend both unrestricted 

Variable Coefficient Std. Error t-Statistic Prob. 

C 50.26005 1.817349 27.65570*** 0.0000 
@TREND -0.008511 0.000472 -18.03149*** 0.0000 
DLN(ARF) 0.152149 0.029530 5.152419*** 0.0013 
DLN(ACDE(-1)) 0.580423 0.111970 5.183742*** 0.0013 
DLN(ARELH(-1)) -0.994278 0.055233 -18.00160*** 0.0000 
DLN(ASUN) 0.120283 0.034568 3.479553*** 0.0103 
DLN(AGG_ALUC(-1)) 0.260304 0.051426 5.061722*** 0.0015 
DLN(AFDI(-1)) 0.035054 0.003211 10.91720*** 0.0000 
DLN(DIA) 0.088633 0.005583 15.87650*** 0.0000 
DLN(INFR(-1)) 0.008665 0.005644 1.535213 0.1686 
DLN(RER(-1)) 0.281763 0.017924 15.71955*** 0.0000 
ECM(-1) -0.547376 0.019766 -27.69268*** 0.0000 
R-squared 0.981931 Mean dependent var 0.031742 
Adjusted R-squared 0.970888 S.D. dependent var 0.082259 
F-statistic 88.92403*** Durbin-Watson stat 2.435866 
Prob(F-statistic) 0.000000    

Diagnostic test      

Test statistics F-statistic P-value Interpretation 
Heteroskedasticity test: Breusch-Pagan-Godfrey 1.356986 0.3566ns No heteroskedasticity 
Breusch-Godfrey Serial Correlation LM Test 2.695976 0.3514ns No Serial Correlation 
Ramsey RESET stability 0.144393 0.7138ns Model correctly specified 
Jacque-Bera test 0.855250 0.6521ns Normal distribution 

Source(s): (Anarah et al., 2025). (***) denote 1%, significance level. (ns) denote not significant. 
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inadequate technology are short-run productivity 
constraints in Nigeria. Diagnostic tests prove the 
accuracy of the model: the Breusch-Pagan-Godfrey test 
shows no heteroskedasticity, the Breusch-Godfrey LM 
test confirms no serial correlation, and the Ramsey 
RESET test shows the model is correctly specified. Also, 
the Jarque-Bera test indicating the residuals are 
normally distributed, gives additional evidence of 
model reliability and sufficiency. All these tests 
combined provide evidence for the model’s 
relationship between the dependent and independent 
variables. 

The CUSUMSQ tests, depicted in Figure 2, show 
that all parameters exhibit long-run stability at the 5% 
significance level. The CUSUM of Squares (CUSUMSQ) 
plot for the ARDL model, which analyzes aggregate 
food crop productivity from 1991 to 2022, demonstrates 
parameter stability, as the cumulative sum of squared 
residuals (represented by the blue line) remains within 
the 5% significance boundaries throughout the period 
(Anarah et al., 2025). This indicates a consistent 
relationship between aggregate food crop productivity 
and its determinants, affirming the model's reliability 
for forecasting and policy analysis. 
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Fig 2: CUSUM of Squares (CUSUMSQ) plot for the ARDL 
model analyzing aggregate food crop productivity from 1991 
to 2022 

 
DISCUSSION 

 
This study set out to disentangle how weather and 

macro-structural forces shape agricultural productivity 
over time. The time-series evidence shows that climate 
variables (rainfall, temperature, sunshine duration, and 
relative humidity) cointegrate with agricultural output 
alongside economic drivers such as the exchange rate, 
foreign and domestic investment, and proxies for 
extension services. In the short run, rainfall and 
sunshine tend to raise output, while high relative 
humidity depresses it; temperature shows non-linear, 
threshold-type effects. The long-run relationships point 
to a climate–economy nexus in which investment 
(domestic and foreign) and stable macro conditions 
amplify or buffer the biophysical impacts of weather. 
These findings are broadly consistent with agronomic 

and econometric literature from Nigeria and West 
Africa, and they carry actionable implications for 
climate-smart agricultural policy, risk management, and 
technology adoption.  The positive short-run 
association between rainfall and agricultural output 
aligns with evidence that water availability is the 
binding constraint for rainfed systems in much of 
Nigeria. Multi-decadal analyses show highly variable 
rainfall and recurrent droughts across Nigeria’s agro-
ecological zones, with yield impacts strongest in the 
Sudan–Sahel belt where growing-season water deficits 
are common (Ayanlade et al., 2018). Yet the negative 
lag effect we detect is also plausible: extreme rainfall 
and flooding in one year frequently depress the 
following season’s performance by eroding topsoil, 
destroying on-farm infrastructure, and disrupting input 
and credit markets. Post-disaster assessments 
document the scale of such damage for example, the 
2012 floods caused crop losses exceeding ₦305 billion 
and inundated large areas close to harvest, with 
marked downstream effects on prices and farm 
recovery in subsequent seasons. Newer assessments 
likewise find that flood shocks reduce per-plot 
production by more than half on average across African 
farm households and that Nigeria’s recent flood years 
(e.g., 2022, 2024) destroyed extensive cropland 
(Wollburg et al., 2024). The mixed temperature signal 
we observe benign at moderate ranges but detrimental 
when heat thresholds are exceeded is consistent with 
crop-physiology and statistical studies showing non-
linear heat damage, particularly during flowering and 
grain filling. Across environments, higher daytime 
maxima shorten phenological phases and reduce grain 
size; the detrimental effects are exacerbated under 
water stress (Oladitan & Emiola, 2024). Modeling and 
field studies in West Africa indicate that matching 
cultivar duration and sowing windows to local heat 
regimes helps buffer these risks, but adaptation space 
narrows as extreme heat days accumulate (Mkuhlani et 
al., 2024). The positive association between sunshine 
hours and output is biophysically expected: intercepted 
photosynthetically active radiation and radiation-use 
efficiency are primary drivers of biomass accumulation 
and yield. Recent work in tropical maize shows grain 
yield correlates strongly with incident radiation, 
especially during grain filling, while crop models 
formalize this via RUE parameters (Ainsworth & Long, 
2021). Although a few regional simulations report 
contexts where very high radiation co-occurs with 
heat/water stress and net yield declines, the 
predominant pattern in Nigerian settings is that 
radiation when not coupled with heat stress supports 
yield gains (Yahaya et al., 2025). The negative 
relationship between relative humidity and output is 
consistent with the disease ecology of tropical 
cropping systems: warm, humid conditions accelerate 
sporulation, infection cycles, and aflatoxin/mycotoxin 
risks, increasing pre- and post-harvest losses. Recent 
plant pathology analyses show that even slight 
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increases in humidity in warm environments can hasten 
disease development and yield loss, a pattern 
repeatedly observed across Nigerian case studies for 
fungal and bacterial diseases (Schlenker & Roberts, 
2009). Although rising CO₂ can increase photosynthesis 
and water-use efficiency, especially in C₃ crops, decades 
of Free-Air CO₂ Enrichment (FACE) experiments show 
that realized yield gains are often constrained by 
nutrient limitations, excess moisture, and heat 
extremes; C₄ cereals (maize, sorghum, millet) generally 
show modest yield responses except under drought 
(Oladitan & Emiola, 2024).  In West Africa’s smallholder 
systems where nitrogen and phosphorus frequently 
limit production CO₂ benefits are unlikely to offset heat 
and water stresses without concurrent soil fertility and 
agronomic improvements. This is echoed in IPCC 
assessments for Africa, which project heightened 
climate risks to food production absent substantial 
adaptation (IPCC, 2022).  Macro-financial conditions 
transmit strongly to farms. Exchange-rate movements 
influence input affordability (fertilizer, fuel, machinery) 
and export incentives; asymmetric models for Nigeria 
indicate that depreciation shocks and volatility can 
hinder sectoral output even when export channels exist 
(Awolaja, 2020). Persistently elevated inflation erodes 
farmers’ purchasing power and amplifies uncertainty, a 
channel repeatedly noted in recent macro assessments 
(World Bank, 2025) and food-security briefs that 
highlight input cost pass-through (FAO, 2025). By 
contrast, well-targeted public and private investments 
irrigation, storage, mechanization, and R&D tend to have 
positive long-run payoffs, particularly when paired with 
effective extension that converts information into 
adoption. Randomized evidence from Nigeria shows that 
digital, personalized agronomic advice increases 
adoption and performance (Arouna et al., 2021), while 
evaluations of input-voucher reforms report measurable 
productivity and welfare gains (Wossen et al., 2017). 

Our findings also cohere with location-specific 
agronomy. For example, in Ondo State maize systems, 
local analyses report yield sensitivity to both rainfall 
variation and warming trends, reinforcing the value of 
aligning planting calendars and cultivar duration with 
within-season rainfall temperature profiles (Oladitan & 
Emiola, 2024). More broadly across Africa, synthesis 
assessments conclude that exposure to extremes 
(floods, heatwaves, compound hot–dry events) is 
increasing and that adaptation benefits hinge on locally 
tailored packages water management, climate-smart 
varieties, storage and drying, and financial instruments 
for risk (IPCC, 2022). 

Two interpretive points follow. First, the lag 
structure in our estimates benefits from timely rains 
but drags after floods; sunshine boosting outcomes 
during sensitive stages; humidity loading disease risk 
maps well to seasonal agronomy and market recovery 
dynamics. Second, geographic heterogeneity matters: 
humid zones are more vulnerable to disease-related 
losses, while drier zones are more sensitive to rainfall 

shortfalls and heat load. This heterogeneity 
underscores why national coefficients average over 
divergent local realities. 

Policy and practice implications. Priority areas 
include: (i) water management and flood resilience 
(small-scale irrigation, rainwater harvesting, floodplain 
and watershed works) to buffer both deficit and excess 
rainfall (Federal Government of Nigeria et al., 2013; 
OCHA, 2022); (ii) heat-smart varietal portfolios and 
sowing windows tuned to local heat/radiation profiles 
(Schlenker & Roberts, 2009; Kiniry et al., 1989); (iii) 
disease and mycotoxin control through timely harvest, 
drying, and safe storage in humid seasons (Cotty & 
Jaime-Garcia, 2007; Magan et al., 2011); and (iv) macro-
stability and input access, reducing exchange-rate 
volatility and alleviating inflationary spikes for critical 
inputs (World Bank, 2025; FAO, 2025). Complementary 
extension and digital advisory systems can scale locally 
actionable recommendations and close the know-do 
gap (Arouna et al., 2021). These directions align with 
regional risk assessments that emphasize integrated, 
context-specific adaptation (IPCC, 2022). 

Limitations and next steps. Sector-level indicators 
inevitably smooth over crop and regional 
heterogeneity. Future work should integrate 
subnational yield data with high-resolution weather 
(including extreme indices), test explicit heat and flood 
thresholds, and couple econometric models with crop 
simulations to translate elasticities into management 
guidance under alternative scenarios. 
 
Conclusion and Recommendations 

This study analyzed the effects of climate change 
on the aggregate productivity of selected food crops in 
Nigeria. The findings show that in the long run, 
aggregate food crop productivity is significantly 
influenced by lagged values of average annual rainfall, 
temperature, relative humidity, sunshine duration, area 
of land under cultivation, agricultural foreign direct 
investment, private domestic investment, government 
capital expenditure, inflation rate, real exchange rate, 
and the trend variable. In the short run, significant 
influences include current values of average annual 
rainfall, sunshine duration, private domestic 
investment, and real exchange rate, along with first-
lagged values of temperature, relative humidity, land 
under cultivation, agricultural foreign direct 
investment, and the time variable. The study 
recommends a holistic approach to maximize 
aggregate food crop productivity by integrating climate 
adaptation strategies with targeted agricultural 
investments. Policymakers should enhance crop 
resilience to climatic variations by developing drought-
resistant and heat-tolerant varieties, expanding the 
area under cultivation, and increasing investments in 
agricultural technologies. Stabilizing macroeconomic 
variables, such as inflation and exchange rates, is also 
crucial for creating a conducive environment for 
sustained agricultural growth. 
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