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ABSTRACT

This investigation quantifies the influence of inter-annual climate variability alongside long-term climate trends
on agricultural output across Nigeria for the period 1991-2022. Attention is centred on dominant meteorological
drivers specifically precipitation, air temperature, solar radiation, atmospheric CO. concentrations, and relative
humidity with yield responses of principal crops being the dependent variable of interest. Using rigorously
sourced secondary data, the empirical analysis adopts the Autoregressive Distributed Lag (ARDL) model
complemented by preliminary stationarity assessment via both Augmented Dickey-Fuller (ADF) and Phillips-
Perron (PP) unit root tests to confer confidence in the estimation procedures. The statistical outputs indicate
that, within a lag structure, rainfall, thermal energy, and photon flux exert an overall positive but
heterogeneously tempered influence on yields, with the crop-to-climatic response exhibiting significant temporal
lags. Conversely, atmospheric CO. and humidity albeit with delayed feedback pathways exhibit negative
damping effects, thereby underscoring the intricate and delayed nexus between plant physiology and altered
atmospheric regimes. Collectively, the evidence substantiates a pronounced and polycentric attenuation of
agricultural productivity traceable to long-term climate change within the observed cohort. The analysis thereby
advocates the prompt execution of geographically tailored adaptive measures, comprising (i) the dissemination
of climate-resilient cultivars, (ii) systematic enlargement of irrigation networks to mitigate rainfall variability, and
(iii) consolidation of agricultural extension systems to elevate farm-level adaptive capacity.
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INTRODUCTION particularly carbon dioxide (CO.), leads to altered

temperature and precipitation patterns and more

Climate change poses a growing threat to
agricultural productivity, especially in underdeveloped
countries like Nigeria. Agriculture, a cornerstone of
Nigeria’s economy, contributes approximately 24% to
the GDP and employs about 70% of the population
(FAO, 2021). Nigeria’s diverse agro-ecological zones,
ranging from humid tropical forests in the south to
semi-arid savannahs in the north, support various
staple crops, including rice, cassava, maize, yams, and
groundnuts, which are vital for both subsistence and
commercial agriculture (NBS, 2020). However, the
effects of change in climate are increasingly
jeopardizing Nigeria's agricultural productivity. Climatic
change, driven by rising greenhouse gas emissions,

frequent extreme weather events (IPCC, 2021). As
Nigeria relies heavily on rain-fed agriculture, the
country is especially vulnerable to these changes due to
limited adaptive capacity (Adetayo et al., 2018). Key
climate variables-CO, emissions, rainfall, temperature,
relative humidity, and sunshine hours-play an important
role in determining the productivity of major food
crops, necessitating effective adaptation strategies.

Empirical research highlights several climate-
related challenges  impacting  Nigerian  crop
productivity. Rising temperatures increase plant

respiration and water stress, leading to reduced yields
(Ayanlade et al., 2020). Erratic rainfall patterns disrupt
planting and harvesting schedules, raising the risk of
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crop failure (Odekunle et al., 2020). While increased CO.
levels may enhance photosynthesis in some cases, they
often result in higher temperatures, which offset the
benefits by exacerbating water stress and increasing
pest and disease incidences (Oladipo et al., 2020).
Additionally, inconsistent rainfall leads to prolonged
dry spells and flooding, further reducing crop yields,
including both water-dependent and drought-resistant
crops (Akinbobola et al., 2019). Temperatures beyond
optimal levels for specific crops reduce photosynthesis
and accelerate crop maturation, ultimately diminishing
yields (Adejuwon, 2021).

Despite global attention on climate change's
impact on agriculture, studies specific to Nigeria remain
limited. The compounded challenges facing Nigeria’s
agricultural sector, such as poverty, inadequate
infrastructure, and limited access to technology, are
further exacerbated by climate change (Nwafor &
Eboh, 2019). Understanding the effects of climate
factors-CO2 emissions, rainfall, temperature, and
humidity staple crops is critical for formulating targeted
adaptation strategies (Olajide et al., 2021).

This study focuses on examining the impact of
change in climate on the productivity of key food crops
in Nigeria from 1991 to 2022. By analyzing long-term
trends in staple crops like rice, cassava, maize, yams,
and groundnuts, the research provides empirical
insights that can inform future agricultural planning
(Adewuyi & Omotosho, 2021). The study aims to
highlight the vulnerabilities in crop productivity and
suggest  intervention areas, emphasizing the
importance of sustainable agricultural practices and
effective climate adaptation strategies to meet the
demands of Nigeria's growing population (Onyekuru et
al., 2020).Globally, numerous studies show that climate
change negatively affects agricultural productivity. For
example, Dongbei et al. (2022) found significant
productivity declines in China due to rising
temperatures, while Habib-ur-Rahman et al. (2022)
reported that droughts, floods, and heat waves
threaten agricultural production across Asia. Similarly,
Nigerian studies consistently indicate adverse impacts
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of climate variability on agriculture (Ogundele &
Jegede, 2013. For instance, Ogbuabor and Egwuchukwu
(2017) documented how erratic climate patterns reduce
crop yields. This study contributes to the existing body
of knowledge by providing evidence-based insights on
the relationship between climate change and food crop
productivity, guiding policymakers and stakeholders in
enhancing Nigeria's agricultural resilience to climate
variability.
MATERIALS AND METHODS

The Study Area

The current research paper focus on Nigeria, the
most populous African nation that is located in south of
Sahara. Nigeria is a West African country, with its
latitudes of S 4°-14° N and longitudes of 3°-15° E divided
into Federal Capital Territory (FCT, Abuja) and 36
states. It borders Niger, Cameroon, and the Gulf of
Guinea, covering 98.3 million hectares, of which only
34.2 million are cultivated, with less than 1% irrigated
(NBS, 2023). Rainfall ranges from 381 cm in the south to
64 cm in the north, and temperatures average 28°C to
31°C. With a population of 223 million in 2023, over 60%
live in rural areas, relying on farming, mining, and crafts
(NPC, 2023). The agricultural sector, including crop
production, livestock, fishery, and forestry, is heavily
impacted by climatic factors like temperature, rainfall,
and CO2 emissions, which affect productivity and
exacerbate climate change (Ogunleye et al., 2021).

Model Specification

The examination of climate change effects on the
aggregate productivity of cassava, groundnut, maize,
rice, and yam in Nigeria, spanning the period from 1991
to 2022, was conducted by estimating a dynamic
autoregressive distributed lag (ARDL) model. Prior
analyses employing the traditional cointegration
methodologies of Engle and Granger (1987) and
Johansen and Juselius (1990) necessitate the same
order of integration for all involved variables, a
condition that is often not met in agricultural time
series data such as those under review. Consequently,
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the study adopts the ARDL bounds testing procedure
proposed by Pesaran et al. (2001), which
accommodates a mixed integration order that includes
both 1(0) and 1(1) processes and, thus, is particularly
advantageous in the present dataset. Haug (2002)
further justifies the employment of the ARDL
framework on the grounds that it is robust in small
sample contexts. Additionally, Anarah et al. (2025)
document that the ARDL framework permits the
simultaneous estimation of long-run and short-run
coefficients, thus providing a more comprehensive
econometric  structure. From the theoretical
underpinnings, Pesaran et al. (2001) stipulate that the
dependent variable must be I(1), while the regressors
can be 1(0) or I(1), which aligns with the specification of
the climate and productivity dataset. The long-run
functional relationship between the climatic variables
and agricultural output, as derived from theory,
empirical literature, and diagnostic tests, s
hypothesised and presented for evaluation.

INAPFCt = Ao + AINARFt + A2InNATEMPt +
A3INARELHt + A4InACDEt + A5INASUNt + A6INnALUCt +
A7INAFDIt-1 + A8InDIAt + A9InGCEAt + A10INnRERt +
A11ININFRt + £t (1)

Where, A's = the long-run unknown coefficients, In
= the natural logarithmic operator, APFCt = the
monetary value of the aggregate agricultural food
crops productivity, encompassing the period t, ARFt =
the average annual rainfall expressed in millimetres for
period t, ATEMPt = the average annual temperature
recorded in degrees Celsius for period t, ARELHt = the
average annual relative humidity presented in
percentage terms for period t, ACDEt = the average
annual carbon dioxide emissions expressed in metric
tons for the period t, ASUNt = the average annual
sunshine total in hours for the period t, ALUCt = the
total harvested crop area in hectares for the period t,
AFDIt = the volume of agricultural foreign direct
investment disbursed during period t, DIAt = the
cumulative domestic investment in the agricultural
sector, expressed in Naira billions during t, GCEAt = the
total government capital expenditure directed toward
agriculture in Naira billions for period t, RERt = the real
exchange rate expressed in Naira per US dollar for
period t, INFRt = the consumer price index inflation rate
expressed as percentage in period t, €t = the stochastic
error component of the equation, (Anarah et al., 2025).

To investigate the long-term association among
the variables under consideration, we adopt the ARDL
bounds testing methodology for cointegration, as
outlined by Pesaran et al. (2001). The technique
presents prominent strengths: it accommodates a
regressor space that contains both stationary and first-
differenced variables without requiring unit-root pre-
testing and displays finite-sample reliability, even for
datasets spanning less than four decades. The error
correction model version of the ARDL approach is
expressed as:
AINAPFCt = Ao + AINAPFCet + A2INARFt + ASINATEMP: +
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A4INARELHt + AsInACDE: + AsInASUN: +A;INALUC: +
AsINAFDIt 4+ + A9InDIAt + AwINGCEA: + AuINnRER: +

AulnINFRe + YP 7 A 0AINAPFCe + YP Ay AINARFei +

Y A, AINATEMP + ¥ A3AINARELHi
+Y P A4 AINACDE + ¥ A5 AINASUNE
2o MAINALUG  + ST 0A;AINAFDL:
Y71 AgAINDIA + P Ao AINGCEA +

¥ A2oAINRERe + X770 Ay AININFRes + € (2)

A denotes the first-difference operator, while the
As represent both the long-run and short-run
coefficients. The notation In signifies the natural
logarithm, t-1 refers to the first lag of the variable, and
ti corresponds to the required lag length of the
variable that best fits the model specification (Anarah
et al.,, 2025). All other variables are defined consistently
with prior usage.

The null hypothesis assumes no cointegration,
specified as Ho: A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11,
A12 = 0. The alternative hypothesis, H1, states that at
least one of these coefficients differs from zero,
though equivalent formulations are possible. The F-
statistic is used to test these hypotheses, with rejection
of Ho indicating the presence of cointegration. The
critical bounds for this decision are provided by Pesaran
et al. (2001). The upper critical bound (UCB) assumes
that all series are integrated of order one [I(1)], while
the lower critical bound (LCB) assumes all are
stationary at order zero [I(0)]. Cointegration is
confirmed when the F-statistic exceeds the UCB, while
a value below the LCB indicates no cointegration.

When the F-statistic falls within the bounds, the
result is inconclusive; therefore, the lagged error
correction term is used alongside the F-test to
determine the long-run relationship. For specification
(2), the appropriate lag length is chosen based on the
Schwarz Bayesian Criterion (SBC). For annual data,
Pesaran and Shin (1999) recommend a maximum of
two lags, with the lag producing the lowest SBC being
retained. If a long-run relationship is confirmed, the
ARDL model in equation (1) is then interpreted
accordingly.

2INAPFCe = Ao +X7 ) A AINAPFCes + X' A, AINARFt
+  YPUAAINATEMP. + Y20, AINARELH
+3P " AsAINACDEL + ¥ A6AINASUN
+XP T AAINALUGH  + YT AgAINAFDE .+
Y AAINDIAL + Y Ao AINGCEA +
Y2~ A1 AINRERe: + 2P A, AININFRes + € 3)

The Autoregressive Distributed Lag (ARDL)
estimation procedure requires (p + 1) k regressions,
with p + 1 denoting the pre-defined maximal lag order
and k representing the count of included explanatory

variables  (Chowdhury, 1993). The lag length
determination proceeds under the Schwartz-Bayesian
Criterion, selectively retaining the fewest lags

necessary, and is thus characterised as exhibiting
parsimony.  Consequently, the framework s
constrained to the simplest feasible configuration that



sufficiently captures the dynamic relationships. The
short-run adjustment mechanism is subsequently
evaluated by recasting the ARDL model into its Error
Correction Model (ECM) representation, whereby the
fitted ECM typology is specified as follows:

AINAPFC: = Ao+ XV A40AINAPFCes
ZiﬁknAmARﬁ4 + Z?EAHAmATEMPH
Y2~ A s AINARELHes +YP7 1 24 AINACDE:
P A sAINASUN, +Y P A6 AINALU Gt
2?_:01 Ai7AINAFDL >+ Z_f{‘ol A1gAINDIA
Y AoAINGCEAL, = 25 A2 AINRER
Y2~ A1 AININFRes + NECMes + € (4)

ECMt = Error Correction term lagged by one period,
n = coefficient of the error correction term,

The lagged residual term (ECM) in equation 4
shows the disequilibrium in the long-run relationship
(ut) in equation (1). The a priori expectation is stated
mathematically as: ARFt, ARELH:, ASUNt, ALUCit, AFDIs -
1, DIAy, GCEA: > 0; ATEMP:, ACDEt, RER, INFRt< 0.

+ o+ o+ o+ o+ o+

Diagnostic Tests: Stationary Properties of The Variable
Used in The Analysis

In estimating the economic models stated in
equations (1), the statistical properties of the series
were tested, particularly their stationarity. The results
of the Augmented Dickey-Fuller (ADF) and Phillips-
Perron (PP) unit root tests for the logged variables in
the analysis are presented in Table 1.

Empirical analysis using the Augmented Dickey-
Fuller (ADF) test confirmed that average annual rainfall
(ARFt), average annual sunshine duration (ASUNt),
average annual temperature (ATEMPt), and total
domestic investment in agriculture (DIAt) were
stationary at level 1(0). A complementary Phillips-
Perron (PP) test corroborated the 1(0) classification for
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ARFt, ASUNt, and DIAt, while indicating that average
annual CO2 emissions (ACDEt), agricultural foreign
direct investment (AFDIt), and total harvested area
were stationary only after first differencing, 1(1), and
therefore required differencing to achieve stationarity.
The consistency of both ADF and PP tests for ARFt and
ASUNt strengthened the reliability of results. An
inconsistency arose with the temperature variable
(ATEMPt), which appeared 1(0) under the ADF test but
I(1) under the PP. To reduce potential bias from
structural breaks and improve reliability, the PP test
was given precedence, following the approach of
Anarah et al. (2025). Accordingly, all 1(1) variables were
log-differenced before estimation to mitigate bias
associated with non-stationarity at levels.

For the long-run equilibrium framework, bounds
testing was applied in accordance with the
autoregressive distributed lag (ARDL) methodology of
Pesaran et al. (2001), which allows for the joint
estimation of short-run and long-run dynamics of the
integrated variables.

The parallel process confirmed that the model
yields dependable estimates of the underlying dynamic
relationships. The incorporation of the Phillips-Perron
test corroborated the adequacy of the assumed data
structure and affirmed the appropriateness of the
Autoregressive Distributed Lag framework.

RESULTS AND DISCUSSION

Effects of Climate Change on Aggregate Productivity
of Food Crops in Nigeria

This section evaluates how climate variability has
shaped aggregate food-crop productivity in Nigeria
over 1991-2022, distinguishing between long-run
equilibrium links and short-run adjustments. The

Table 1: Result of the unit root test of the logged variables used in the analysis

Variable Augmented Dickey-Fuller Test Phillips-Perron Test
Level 1st 10 Level 1st 10
Difference Difference

Average annual CO, emission (ACDEy) -1.599 -4.349 ** (1) -1.348 -4.431%% 1(1)
Agricultural foreign direct investment (AFDIy) -1.516 -6.197%%* (1) 1339 -6.835%* 1(1)
Average annual relative humidity (ARELH¢) -2.770 -6.373*%* (1) -2.667 -8.511%* 1(1)
Average annual rainfall (ARF¢) -10.122%* - I(0) -6.228%* - I(0)
Average annual sunshine hours (ASUN) -5.042%* - I(0) -8.195%* - I(0)
Average annual temperature (ATEMP) -4.331% - I(0) -1.909 -4.411%% 1(1)
Total domestic investment in agriculture (DIA¢) -4.588%* - I(0) -4.526%* - I(0)
Govt. capital expenditure on agric. (GCEA¢) -2.130 -6.816%* I(1) -1.893 -9.373%%* 1(1)
Aggregate area of land harvested of food crops -1.255 -4.756%% (1) -1.238 -4.685%* 1(1)
(AGG_ALUCY)

Value of aggregate productivity (AGG_PRODTY) -2.359 -6.820%* (1) -2.279 -8.318%* 1(1)
Average annual inflation rate (INFR;) -2.667 -5.335%% (1) -2.882 -8.421%* 1(1)
Average annual real exchange rate (RER:) -0.308 -4.251% I(1) -0.444 -4.131* 1(1)

Note: For the Augmented Dickey-Fuller (ADF) investigation conducted at the level of the series, the critical threshold values are -
4.297 (at the 1% significance level) and -3.568 (at the 5% significance level). At the first differencing, the same critical values apply.
Concerning the Phillips-Perron (PP) test, which also evaluates the level, the critical values are marginally less stringent at -4.285
(1% level) and -3.563 (5% level). At the first difference stationarity, the hypothesis-testing boundary mirrors that of the ADF.
Asterisks are employed to indicate the significance thresholds—5% and 1% demarcated by one and two asterisks, respectively.
The sequencing of the level, differenced evaluation, as well as the employed lag structure in the tests, integrates both a constant
term and a time trend. The symbol ‘10’ abbreviates the number of integration steps indicated at the respective criterion.



empirical specification includes key climate indicators
rainfall, temperature, sunshine duration, atmospheric
CO,, and relative humidity while controlling for selected
macroeconomic factors to reduce omitted-variable
bias. To verify the existence of a stable long-run
relationship among these series, we apply the Pesaran-
Shin-Smith bounds testing procedure within an ARDL
framework. The bounds test outcome confirming (or
rejecting) co-integration between climate indicators
and aggregate food-crop productivity is reported in
Table 2, which provides the computed F-statistic
alongside the relevant critical values for the chosen
significance levels and the number of regressors.
Where  co-integration is  supported, long-run
coefficients are interpreted jointly with the associated
error-correction dynamics to quantify the speed at
which  short-run  deviations converge back to
equilibrium.

Table 2: Results from the Bounds test examining the
existence of a co-integration relationship between climate
change indicators, macroeconomic factors, and overall food
crop productivity in Nigeria.

F-Bounds Null Hypothesis: No levels

Test relationship

Test Value Signif. I(0) 1(1)

Statistic

F-statistic 24.85274 10% 2.07 3.16

k 1 5% 2.33 3.46
2.5% 2.56 3.76

1% 2.84 4.10

The results of the bounds test report an F-statistic
of 24.85274, which surpasses the critical threshold at
both the 1 per cent (4.1) and 5 per cent (3.46)
significance levels. Consequently, the null hypothesis
stipulating the absence of cointegration is rejected,
substantiating the existence of a long-run equilibrium
linkage among the considered variables. Such a
pronounced finding asserts that, notwithstanding
transitory oscillations, the variables demonstrate a
cohesive trajectory in the enduring temporal
framework. The model thus provides a rigorous
representation of the wunderlying mechanics of
aggregate food crop productivity in Nigeria, evidencing
a prevailing long-run equilibrium which is structurally
conditioned by climatic and macroeconomic
determinants. An extended analytical framework will
pursue the quantification of these associations by
applying long-run estimation procedures in the
forthcoming section.

ARDL Long-run Coefficients

Table 3 presents the ARDL long-run coefficients,
mapping the influence of climate change on the trend
of aggregate food crop productivity in Nigeria for the
period 1991-2022. The estimated model achieves an R?
of 0.9987 and an adjusted R? of 0.9947, suggesting that
99.1% of the recorded change in productivity is
accounted for by the independent variables under
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study. These statistics confer considerable explanatory
capacity and, in tandem with an F-statistic of 250.0284
(p=0.000000), the null hypothesis of equation
insignificance is decisively rejected at the 1% significance
threshold. The Durbin-Watson statistic of 2.4359
insinuates an absence of serial correlation, further
validating the estimated parameters. Model
specification was directed by the Akaike Information
Criterion, which selects the ARDL (1,1, 0,1, 1,1, 1,1, 1, 0,
1, 1) architecture as the most parsimonious
representational frame. The designated lag structure,
employing lagged regressor variables constrained to a
maximum lag of one period, duly accommodates the
temporal interdependencies between climatic factors,
selected macroeconomic indicators and the
performance of aggregate food crop productivity.

The Phillips-Perron unit root test verified the
stationarity of the variables, ensuring robust
estimation. Lagged Aggregate Food Crop Productivity.
The coefficient for lagged aggregate food crop
productivity (LN (AGG_PRODUCTIVITY(-1))) is -0.547376
(p = 0.0009), indicating a significant negative
relationship with current productivity. This suggests
that a 1% increase in the previous year’s productivity
leads to a 54.7% decrease in current productivity,
highlighting a potential diminishing returns effect. Such
a result is consistent with the theory of diminishing
returns, where over-utilization of resources, like soil
nutrients, can reduce future productivity. Olaniyi et al.
(2023) and Ahmed et al. (2022) support this, noting that
high previous yields often result in soil degradation,
adversely affecting future productivity. Among climate
variables, lagged average annual rainfall (LN (ARF (-1))),
lagged average annual temperature (LN (ATEMP (-1))),
and lagged average annual relative humidity (LN
(ARELH (-1))) significantly impact aggregate food crop
productivity. Current average annual sunshine duration
(LN (ASUN)) and its lagged value (LN (ASUN (-1))) also
show significant effects. Current annual rainfall (LN
(ARF)) positively affects productivity (0.152149, p =
0.0746), whereas lagged rainfall (LN (ARF (-1)))
negatively impacts it (-1.031162, p = 0.0001). This
suggests that while current rainfall benefits crops,
excessive or poorly distributed rainfall from the
previous year can harm productivity. Imandojemu et al.
(2024) and Anarah et al. (2025) highlight this dual
effect, with both positive and negative impacts of
rainfall on productivity. Lagged average temperature
(LN (ATEMP (-1))) has a significant positive effect
(18.13547, p = 0.0000), indicating that higher
temperatures in the previous year boost productivity,
provided they remain within an optimal range. Arora et
al. (2019) and Sowunmi et al. (2022) confirm that
moderate temperature increases can enhance crop
yields. Lagged relative humidity (LN (ARELH (-1))) has a
significant negative impact (-0.994278, p = 0.0001).
High humidity from the previous year is associated with
lower productivity, likely due to increased pest and
disease prevalence. Cammarano (2022) and Amaefule
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Table 3: ARDL long-run coefficients showing the impact of climate change on total food crop productivity in Nigeria (1991-2022),

accounting for selected macroeconomic variables

Dependent Variable: LN(AGG_PRODUCTIVITY)
Model-selection criterion: Akaike information criterion (AIC)

Dynamic covariates (one lag, automatic selection): LN(ARF), LN(ATEMP(-1))

LN(ACDE(-1)), LN(ARELH(-1)), LN(ASUN), LN(AGG_ALUC(-1))
LN(AFDI(-1)), LN(DIA), LN(GCEA(-1)), LN(INFR(-1)), LN(RER(-1))
Standard covariates: constant, @ TREND

Selected Specification: ARDL(1,1,0,1,1,1,1,1,1,0,1,1)

Variable Coefficient Std. Error t-Statistic Prob.*
LN(AGG_PRODUCTIVTY(-1)) -0.547376 0.098570 -5.553170%*% 0.0009
LN(ARF) 0.152149 0.072670 2.093696% 0.0746
LN(ARF(-1)) -1.031162 0.137565 -7.495841%%% 0.0001
LN(ATEMP(-1)) 18.13547 1.789464 10.13458%%* 0.0000
LN(ACDE(-1)) 0.580423 0.320459 1.811221 0.1130
LN(ACDE(-2)) -0.183946 0.247635 -0.742809 0.4818
LN(ARELH(-1)) -0.994278 0.120450 -8.254728%** 0.0001
LN(ARELH(-2)) 0.247600 0.160523 1.542455 0.1669
LN(ASUN) 0.120283 0.102442 1.174155 0.2787
LN(ASUN(-1)) 0.282244 0.103432 2.728798%%* 0.0294
LN(AGG_ALUC(-1)) 0.260304 0.112495 2.313922%% 0.0539
LN(AGG_ALUC(-2)) -0.100064 0.111598 -0.896645 0.3997
LN(AFDI(-1)) 0.035054 0.011056 3.170665%* 0.0157
LN(AFDI(-2)) -0.023277 0.009314 -2.499170%* 0.0410
LN(DIA) 0.088633 0.018738 4.729997%%* 0.0021
LN(DIA(-1)) 0.064840 0.065664 0.987442 0.3563
LN(GCEA(-1)) -0.001273 0.064597 -0.019705 0.9848
LN(INFR(-1)) 0.008665 0.017352 0.499375 0.6328
LN(INFR(-2)) 0.128886 0.015361 8.390681%** 0.0001
LN(RER(-1)) 0.281763 0.047095 5.982831%** 0.0006
LN(RER(-2)) -0.444058 0.057757 -7.688419%*% 0.0001
C 50.26005 5.530753 9.087379%** 0.0000
@TREND -0.008511 0.008383 -1.015240 0.3438
R-squared 0.998729 Mean dependent var 5.896052
Adjusted R-squared 0.994735 S.D. dependent var 0.310160
S.E. of regression 0.022506 Akaike info criterion -4.672002
Sum squared resid 0.003546 Schwarz criterion -3.597751
LN likelihood 93.08004 Hannan-Quinn criter. -4.328340
F-statistic 250.0284%*% Durbin-Watson stat 2.435866
Prob(F-statistic) 0.000000

Source(s): (Anarah et al.,, 2025)(***), (**) and (*) denote 1%, 5% and 10% significance level

et al. (2023) support this, noting that high humidity can long-term challenges. Current private domestic

reduce crop yields. Lagged sunshine duration (LN
(ASUN (-1))) positively affects productivity (0.282244, p
0.0294), suggesting that longer sunshine hours
enhance productivity by improving photosynthesis.
Osuiji et al. (2024) and Rauff & Ismail (2018) find that
adequate sunshine is crucial for crop growth and yield.
Among the macroeconomic Variables serving as control
in the model, lagged area of land under cultivation (LN
(AGG_ALUC (-1))) positively influences current
productivity (0.260304, p = 0.0539), indicating that
increased land area boosts productivity. Adeleke et al.
(2023) and Ganiyu et al. (2023) support this, noting that
land expansion enhances agricultural output. The
previous year’s FDI (LN (AFDI (-1))) has a positive effect
on productivity (0.035054, p = 0.0157), while two-year
lagged FDI (LN (AFDI (-2))) negatively affects it (-
0.023277, p = 0.0410). This suggests that initial FDI
boosts productivity, but its impact diminishes over
time. Uteh et al. (2022) and Ayuba et al. (2021) highlight
the positive initial effects of FDI, but also note potential
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investment in agriculture (LN (DIA)) significantly boosts
productivity (0.088633, p 0.0021), supporting
infrastructure and capacity building. Obe et al. (2024)
and Raji et al. (2024) confirm that domestic investment
enhances agricultural output. The coefficient for the
second lag of the inflation rate (LN (INFR (-2))) is
positive and significant (0.128886, p = 0.0001). Higher
inflation in earlier periods may boost current
productivity by increasing agricultural product prices,
though this relationship is complex. Patrick (2023) and
Daniel et al. (2022) note that moderate inflation can
stimulate production. The previous year’s real
exchange rate (LN (RER (-1))) positively impacts
productivity (0.281763, p = 0.0006), suggesting that
currency depreciation benefits productivity by
enhancing export competitiveness. However, the two-
year lagged exchange rate (LN (RER (-2))) has a
significant negative effect (-0.444058, p = 0.0001),
indicating that prolonged depreciation may increase
input costs. Umoru & Imimole (2022) and lorember et



al. (2024) find that while short-term depreciation
boosts productivity, long-term effects can be
detrimental.

ARDL Error Correction Regression Estimated Short-run
Coefficients

Table 4 encapsulates the results from the selected
macroeconomic controls pertaining to the effect of
climate change on aggregate food crop productivity,
focusing on the predicted short-run elasticities from
the ARDL error correction regression.

The short-run results from the ECM show that not
all indicators of climate change and macroeconomic
elements impact the aggregate productivity of food
crops greatly. It is evident that some climate factors
such as average annual rainfall (DLN (ARF)), and carbon
dioxide emissions (DLN (ACDE (-1))) have a positive
impact on productivity at the 1% significance level likely
due to the availability of water and the fertilisation
effect of CO, (Anarah et al, 2025). Alternatively,
relative humidity (DLN (ARELH (-1))) has a negative
impact on productivity at the 1% level likely due to
increased chances of diseases or waterlogging.
Sunshine duration (DLN (ASUN)) has a positive impact
on productivity at the 1% significance level likely due to
stimulation of photosynthesis. The negative and
significant trend variable (@TREND) with a coefficient
of -0.008511 also suggests a decline in aggregate food
crop productivity over the period with the available
technology in agriculture, which is likely due to a lack of
proper technology adoption, an absence of local, and
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systemic factors like poor governance, infrastructure,
policy incoherency, and the disarray of innovation to
local requirements.

According to the ARDL correction model, the area
under cultivation of food crops (DLN (AGG_ALUC (-1)))
positively impacts productivity at 1% statistical
significance, supporting the hypothesis that expansion
of cultivation increases output (Anarah et al., 2025). In
regard to the macroeconomic parameters, private
domestic investment (DLN (DIA)) and foreign direct
investment inflows into agriculture (DLN (AFDI (-1)))
are productivity accelerators at the 1% level, which
underlines the significance of investment into
agriculture. Also, the real exchange rate (DLN (RER (-
1))) positively impacts productivity at 1% level, probably
because it lowers the cost of imported inputs or
increases the competitiveness of exports. On the other
hand, inflation (DLN (INFR (-1))) does not play a
meaningful role, implying that its productivity-sapping
effect is not felt immediately in the short term. The
model error correction coefficient (-0.547376) is
negative and statistically significant at 1% level, which
means that, the model deviations from the long-run
equilibrium are corrected at the speed of
approximately 54.7% per year. This shows that the
model is stable in the long-run.

There are also other factors which enhance
productivity in the long-run, such as rainfall, CO2
emissions, sunshine duration, domestic land cultivation,
domestic and foreign investment, and the real
exchange rate. In contrast, high relative humidity and

Table 4: Results of the ARDL Error Correction Regression Estimated Short-run Coefficients for the Effect of Climate Change on
Aggregate food crop productivity in Nigeria (1991-2022), with Control for selected Macroeconomic Variables

Autoregressive Distributed Lags (ARDL) Modelling Error Correction Mechanism
Dependent Variable: logarithm of aggregate productivity (DLN(AGG_PRODUCTIVITY)

Estimation: ARDL of order (1,1,0,1,1,1,1,1,1,0,1,1)
Specification: case 5—constant and trend both unrestricted

Variable Coefficient Std. Error t-Statistic Prob.
C 50.26005 1.817349 27.65570%%* 0.0000
@TREND -0.008511 0.000472 -18.03149%** 0.0000
DLN(ARF) 0.152149 0.029530 5.152419%%* 0.0013
DLN(ACDE(-1)) 0.580423 0.111970 5.183742%%* 0.0013
DLN(ARELH(-1)) -0.994278 0.055233 -18.00160%*** 0.0000
DLN(ASUN) 0.120283 0.034568 3.479553%** 0.0103
DLN(AGG_ALUC(-1)) 0.260304 0.051426 5.061722%%* 0.0015
DLN(AFDI(-1)) 0.035054 0.003211 10.91720%%* 0.0000
DLN(DIA) 0.088633 0.005583 15.87650%** 0.0000
DLN(INFR(-1)) 0.008665 0.005644 1.535213 0.1686
DLN(RER(-1)) 0.281763 0.017924 15.71955%%* 0.0000
ECM(-1) -0.547376 0.019766 -27.69268%%* 0.0000
R-squared 0.981931 Mean dependent var 0.031742
Adjusted R-squared 0.970888 S.D. dependent var 0.082259
F-statistic 88.92403%** Durbin-Watson stat 2.435866
Prob(F-statistic) 0.000000

Diagnostic test

Test statistics

Heteroskedasticity test: Breusch-Pagan-Godfrey
Breusch-Godfrey Serial Correlation LM Test
Ramsey RESET stability

Jacque-Bera test

F-statistic P-value Interpretation
1.356986 0.3566™ No heteroskedasticity
2.695976 0.3514" No Serial Correlation
0.144393 0.7138™ Model correctly specified
0.855250 0.6521" Normal distribution

Source(s): (Anarah et al., 2025). (***) denote 1%, significance level. (™) denote not significant.



inadequate technology are short-run productivity
constraints in Nigeria. Diagnostic tests prove the
accuracy of the model: the Breusch-Pagan-Godfrey test
shows no heteroskedasticity, the Breusch-Godfrey LM
test confirms no serial correlation, and the Ramsey
RESET test shows the model is correctly specified. Also,
the Jarque-Bera test indicating the residuals are
normally distributed, gives additional evidence of
model reliability and sufficiency. All these tests
combined provide evidence for the model’s
relationship between the dependent and independent
variables.

The CUSUMSQ tests, depicted in Figure 2, show
that all parameters exhibit long-run stability at the 5%
significance level. The CUSUM of Squares (CUSUMSQ)
plot for the ARDL model, which analyzes aggregate
food crop productivity from 1991 to 2022, demonstrates
parameter stability, as the cumulative sum of squared
residuals (represented by the blue line) remains within
the 5% significance boundaries throughout the period
(Anarah et al,, 2025). This indicates a consistent
relationship between aggregate food crop productivity
and its determinants, affirming the model's reliability
for forecasting and policy analysis.
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Fig 2: CUSUM of Squares (CUSUMSQ) plot for the ARDL
model analyzing aggregate food crop productivity from 1991
to 2022

DISCUSSION

This study set out to disentangle how weather and
macro-structural forces shape agricultural productivity
over time. The time-series evidence shows that climate
variables (rainfall, temperature, sunshine duration, and
relative humidity) cointegrate with agricultural output
alongside economic drivers such as the exchange rate,
foreign and domestic investment, and proxies for
extension services. In the short run, rainfall and
sunshine tend to raise output, while high relative
humidity depresses it; temperature shows non-linear,
threshold-type effects. The long-run relationships point
to a climate—-economy nexus in which investment
(domestic and foreign) and stable macro conditions
amplify or buffer the biophysical impacts of weather.
These findings are broadly consistent with agronomic
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and econometric literature from Nigeria and West
Africa, and they carry actionable implications for
climate-smart agricultural policy, risk management, and
technology adoption. The positive short-run
association between rainfall and agricultural output
aligns with evidence that water availability is the
binding constraint for rainfed systems in much of
Nigeria. Multi-decadal analyses show highly variable
rainfall and recurrent droughts across Nigeria’s agro-
ecological zones, with yield impacts strongest in the
Sudan-Sahel belt where growing-season water deficits
are common (Ayanlade et al., 2018). Yet the negative
lag effect we detect is also plausible: extreme rainfall
and flooding in one year frequently depress the
following season’s performance by eroding topsoil,
destroying on-farm infrastructure, and disrupting input
and credit markets. Post-disaster assessments
document the scale of such damage for example, the
2012 floods caused crop losses exceeding 305 billion
and inundated large areas close to harvest, with
marked downstream effects on prices and farm
recovery in subsequent seasons. Newer assessments
likewise find that flood shocks reduce per-plot
production by more than half on average across African
farm households and that Nigeria’s recent flood years
(e.g., 2022, 2024) destroyed extensive cropland
(Wollburg et al., 2024). The mixed temperature signal
we observe benign at moderate ranges but detrimental
when heat thresholds are exceeded is consistent with
crop-physiology and statistical studies showing non-
linear heat damage, particularly during flowering and
grain filling. Across environments, higher daytime
maxima shorten phenological phases and reduce grain
size; the detrimental effects are exacerbated under
water stress (Oladitan & Emiola, 2024). Modeling and
field studies in West Africa indicate that matching
cultivar duration and sowing windows to local heat
regimes helps buffer these risks, but adaptation space
narrows as extreme heat days accumulate (Mkuhlani et
al., 2024). The positive association between sunshine
hours and output is biophysically expected: intercepted
photosynthetically active radiation and radiation-use
efficiency are primary drivers of biomass accumulation
and yield. Recent work in tropical maize shows grain
yield correlates strongly with incident radiation,
especially during grain filling, while crop models
formalize this via RUE parameters (Ainsworth & Long,
2021). Although a few regional simulations report
contexts where very high radiation co-occurs with
heat/water stress and net vyield declines, the
predominant pattern in Nigerian settings is that
radiation when not coupled with heat stress supports
yield gains (Yahaya et al., 2025). The negative
relationship between relative humidity and output is
consistent with the disease ecology of tropical
cropping systems: warm, humid conditions accelerate
sporulation, infection cycles, and aflatoxin/mycotoxin
risks, increasing pre- and post-harvest losses. Recent
plant pathology analyses show that even slight



increases in humidity in warm environments can hasten
disease development and yield loss, a pattern
repeatedly observed across Nigerian case studies for
fungal and bacterial diseases (Schlenker & Roberts,
2009). Although rising CO, can increase photosynthesis
and water-use efficiency, especially in C; crops, decades
of Free-Air CO, Enrichment (FACE) experiments show
that realized yield gains are often constrained by
nutrient limitations, excess moisture, and heat
extremes; C, cereals (maize, sorghum, millet) generally
show modest yield responses except under drought
(Oladitan & Emiola, 2024). In West Africa’s smallholder
systems where nitrogen and phosphorus frequently
limit production CO, benefits are unlikely to offset heat
and water stresses without concurrent soil fertility and
agronomic improvements. This is echoed in IPCC
assessments for Africa, which project heightened
climate risks to food production absent substantial
adaptation (IPCC, 2022). Macro-financial conditions
transmit strongly to farms. Exchange-rate movements
influence input affordability (fertilizer, fuel, machinery)
and export incentives; asymmetric models for Nigeria
indicate that depreciation shocks and volatility can
hinder sectoral output even when export channels exist
(Awolaja, 2020). Persistently elevated inflation erodes
farmers’ purchasing power and amplifies uncertainty, a
channel repeatedly noted in recent macro assessments
(World Bank, 2025) and food-security briefs that
highlight input cost pass-through (FAO, 2025). By
contrast, well-targeted public and private investments
irrigation, storage, mechanization, and R&D tend to have
positive long-run payoffs, particularly when paired with
effective extension that converts information into
adoption. Randomized evidence from Nigeria shows that
digital, personalized agronomic advice increases
adoption and performance (Arouna et al., 2021), while
evaluations of input-voucher reforms report measurable
productivity and welfare gains (Wossen et al., 2017).

Our findings also cohere with location-specific
agronomy. For example, in Ondo State maize systems,
local analyses report yield sensitivity to both rainfall
variation and warming trends, reinforcing the value of
aligning planting calendars and cultivar duration with
within-season rainfall temperature profiles (Oladitan &
Emiola, 2024). More broadly across Africa, synthesis
assessments conclude that exposure to extremes
(floods, heatwaves, compound hot-dry events) is
increasing and that adaptation benefits hinge on locally
tailored packages water management, climate-smart
varieties, storage and drying, and financial instruments
for risk (IPCC, 2022).

Two interpretive points follow. First, the lag
structure in our estimates benefits from timely rains
but drags after floods; sunshine boosting outcomes
during sensitive stages; humidity loading disease risk
maps well to seasonal agronomy and market recovery
dynamics. Second, geographic heterogeneity matters:
humid zones are more vulnerable to disease-related
losses, while drier zones are more sensitive to rainfall
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shortfalls and heat load. This heterogeneity
underscores why national coefficients average over
divergent local realities.

Policy and practice implications. Priority areas
include: (i) water management and flood resilience
(small-scale irrigation, rainwater harvesting, floodplain
and watershed works) to buffer both deficit and excess
rainfall (Federal Government of Nigeria et al., 2013;
OCHA, 2022); (ii) heat-smart varietal portfolios and
sowing windows tuned to local heat/radiation profiles
(Schlenker & Roberts, 2009; Kiniry et al., 1989); (iii)
disease and mycotoxin control through timely harvest,
drying, and safe storage in humid seasons (Cotty &
Jaime-Garcia, 2007; Magan et al., 2011); and (iv) macro-
stability and input access, reducing exchange-rate
volatility and alleviating inflationary spikes for critical
inputs (World Bank, 2025; FAO, 2025). Complementary
extension and digital advisory systems can scale locally
actionable recommendations and close the know-do
gap (Arouna et al., 2021). These directions align with
regional risk assessments that emphasize integrated,
context-specific adaptation (IPCC, 2022).

Limitations and next steps. Sector-level indicators
inevitably =~ smooth over crop and regional
heterogeneity. Future work should integrate
subnational yield data with high-resolution weather
(including extreme indices), test explicit heat and flood
thresholds, and couple econometric models with crop
simulations to translate elasticities into management
guidance under alternative scenarios.

Conclusion and Recommendations

This study analyzed the effects of climate change
on the aggregate productivity of selected food crops in
Nigeria. The findings show that in the long run,
aggregate food crop productivity is significantly
influenced by lagged values of average annual rainfall,
temperature, relative humidity, sunshine duration, area
of land under cultivation, agricultural foreign direct
investment, private domestic investment, government
capital expenditure, inflation rate, real exchange rate,
and the trend variable. In the short run, significant
influences include current values of average annual
rainfall, sunshine duration, private domestic
investment, and real exchange rate, along with first-
lagged values of temperature, relative humidity, land
under  cultivation,  agricultural  foreign  direct
investment, and the time variable. The study
recommends a holistic approach to maximize
aggregate food crop productivity by integrating climate
adaptation strategies with targeted agricultural
investments. Policymakers should enhance crop
resilience to climatic variations by developing drought-
resistant and heat-tolerant varieties, expanding the
area under cultivation, and increasing investments in
agricultural technologies. Stabilizing macroeconomic
variables, such as inflation and exchange rates, is also
crucial for creating a conducive environment for
sustained agricultural growth.
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